
Affectedness as a factor in online sentence processing: ERP data

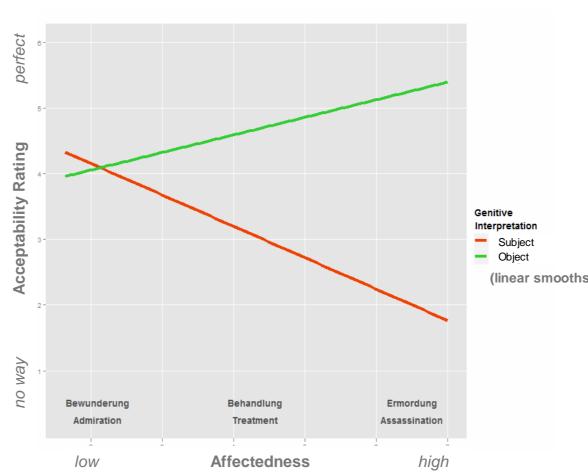
1. Linguistic Backgrounds – Events & Affectedness in Language

Different kinds of events **Affectedness** 1) a. The doctor greeted the boy. \rightarrow no change implied for the boy low mid b. The doctor treated the boy. → the boy potentially changes high → the boy necessarily changes c. The doctor cured the boy.

- Verbs imply different degrees of change of state (= 'affectedness') for object arguments. Affectedness is a central element of linguistic theory at the semantics/syntax interface [1] & for the linking of verbs and their arguments.

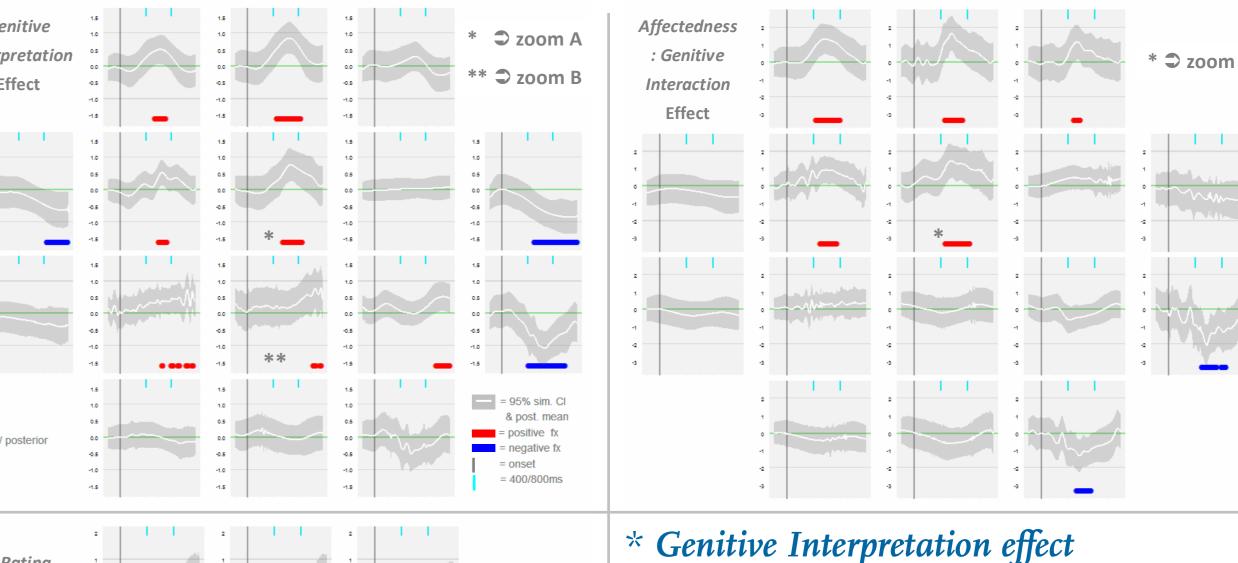
Affectedness & acceptability patterns in German nominalisations (cf. [2])

2) Context:	The doctor (a) gr	eeted / (b) treated / (c) cured the boy.	Affectednes
Continuation: a	. Die <i>Begrüßung</i>	des ✓Jungen /✓ Arztes	low
	the 'greeting'	the _{Gen} boy's / doctor's	
b	. Die <i>Behandlung</i>	des ✓ Jungen / ≈ Arztes	mid
	the 'treatment '	the _{Gen} boy's / doctor's	
С	. Die <i>Heilung</i>	des ✓ Jungen / ?? Arztes	high
	the 'cure '	the _{Gen} boy's / doctor's	


2. Questions

- Which impact does affectedness as a linguistic interface phenomenon (semantics ↔ syntax) have on
- a. Lexical-semantic processing?
- → Nominalisation segments (not presented here)
- b. Processing of predicate/argument linking?
- → Genitive segments ('boy/doctor')

* Which ERP components does this interface processing correlate with?

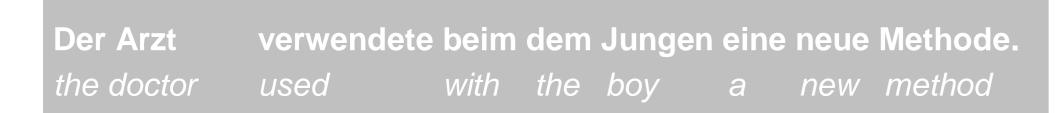

- → Discussion about 'division of labour' between
- 'Lexicon/Meaning' (N400)
- 'Structural integration' (P600)
- 'Semantic composition' ('Anterior Midline Field' found in MEG studies [3])

4a. Results – Ratings

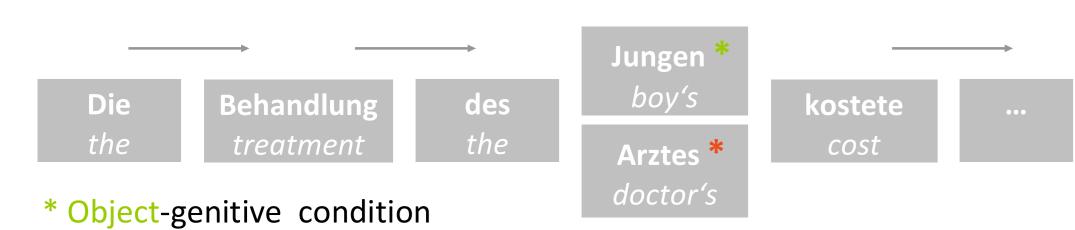
- * Object-genitives better accepted than subject-genitives
- * Interaction 'Genitive: Affectedness'
- Objects
- affectedness, ratings
- Subjects
- → affectedness, ≥ ratings
- Equal acceptability at low levels of affectedness

4b. ERP Results – Selected Effects Across Regions of Interest

- Frontal positivity for Subject-Genitives @ left/midline ROIs (≈ 550-850ms)
- *Later posterior* positivity (≈ 1030ms)

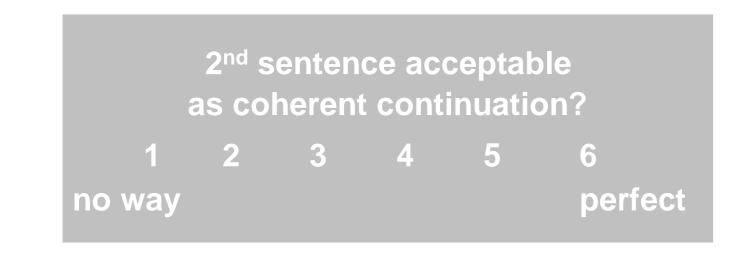

Affectedness: Genitive Interaction effect

- Positivity @ frontal left/midline ROIs (≈ 460-800ms), no posterior positivity
- Rating effect (coded bad to good!)
- Frontal midline neg. (≈ 500-850ms)
- Parallel/later posterior effects


3. ERP-Experiment

Trial-structure & task

1. Context sentence



2. Continuation sentence (RSVP – 600ms SOA)

- * Subject-genitive condition
- 3. Acceptability rating

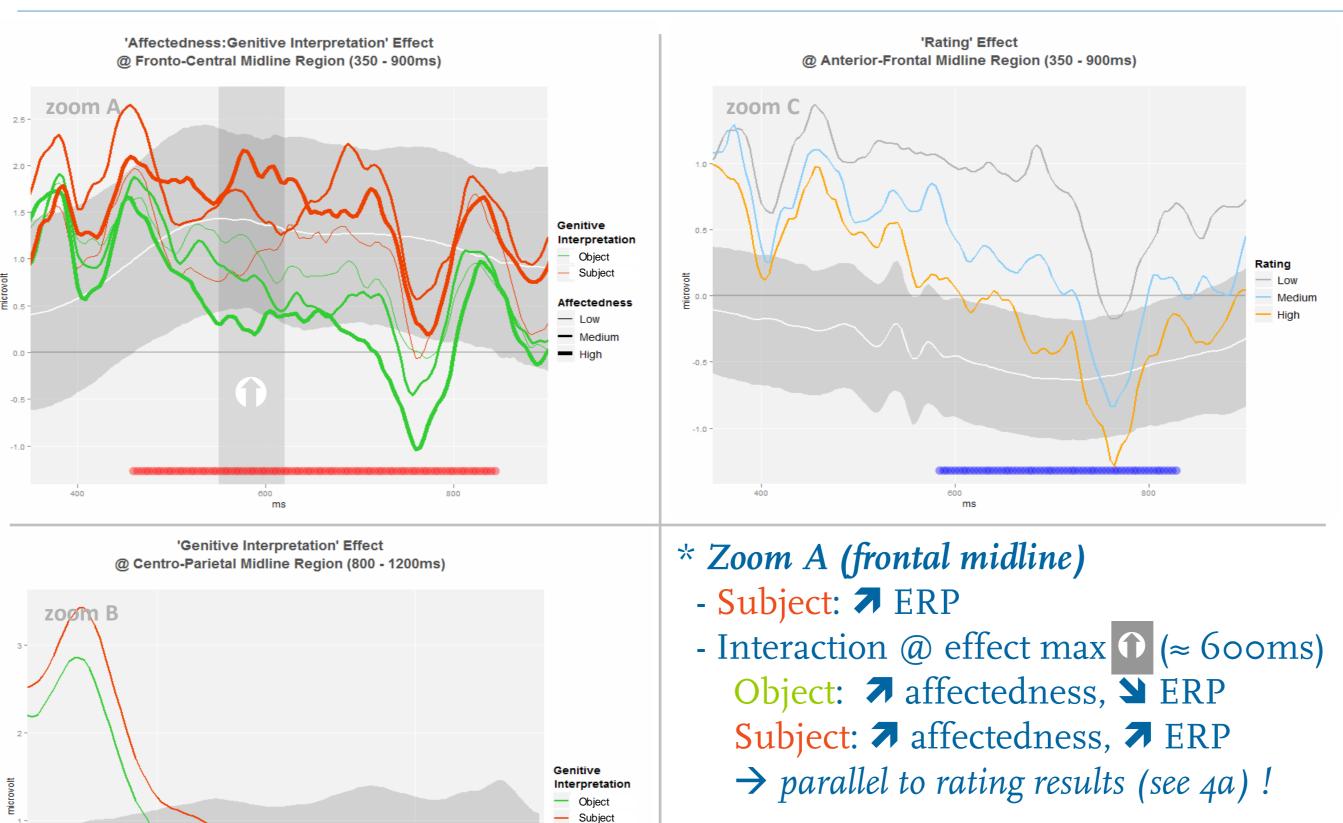
Affiliations

² Department of German Language and Linguistics, Humboldt Universität zu Berlin

¹ Berlin School of Mind and Brain, Humboldt Universität zu Berlin

³ Department of Psychology, Humboldt Universität zu Berlin

⁴ ZAS Berlin (Center for General Linguistics Berlin)


Materials & participants

- 84 ung-nominalisations of different affect. levels
- Each in both conditions → 168 sentence pairs
- Affectedness levels rated by native speakers
- 26 German native speaking participants

Analysis

- Segments on genitives (-200/1200 ms)
- 16 regions of interest, average reference
- Bayesian wavelet-based functional mixed model [4, 5] via custom-programmed R-interface
- Covariates of interest:
- a. Genitive interpretation (object vs. subject)
- b. Affectedness-level of nominalisations (numeric)
- c. Rating (numeric)
- d. Interactions of a:b & a:c
- Random effect for participants
- Control covariates:
- * Word length & frequency, list position ...

4c. ERP Results – Zooms

- * Zoom B (posterior midline)
- Subject-positivity follows frontal effects
- Better ratings, **\(\)** ERP
- * Zoom C (frontal midline)

* No effect on N400!

References

- [1] Beavers, J. (2011). On Affectedness. Natural Language and Linguistic Theory, 29, 335-370.
- [2] Ehrich, V., & Rapp, I. (2000). Sortale Bedeutung und Argumentstruktur: ung-Nominalisierungen im Deutschen. Zeitschrift für Sprachwissenschaft, 19, 245-303.
- [3] Pylkkänen, L., & McElree, B. (2007). An MEG Study of Silent Meaning. Journal of Cognitive Neuroscience, 19, 1905-1921.
- [4] Morris, J.S., & Carroll, R.J. (2006). Wavelet-Based Functional Mixed Models. Journal of the Royal Statistical Society, Series B, 68, 179-199. [5] Davidson, D.J. (2009). Functional Mixed-Effect Models for Electrophysiological Responses. Neurophysiology, 41, 71-79.
- [6] Kaan, E., & Swaab, T.Y. (2003). Repair, Revision and Complexity in Syntactic Analysis: An Electrophysiological Differentiation. Journal of Cognitive Neuroscience, 15, 98-110.

5. Summary

- * Depending on genitive interpretation, affectedness had differential impact on linking process, reflected by
- Ratings & frontal ERP-component
- * Ratings and frontal ERP-patterns are consistent with each other & with independent reading time data
- These ERP effects are in P600 time window, but with frontal distribution
- → Related to semantic composition (AMF – [3]) or discourse complexity [6], mediated by affectedness?
- → Influence of task?
- * Posterior positivity follows frontal one & does not show interaction pattern