Introduction

- The use of NLP in ICALL has primarily centered on diagnosing learner errors and, more recently, testing and assessment.
- Idea: Explore how NLP technology can support other aspects of second language learning.
- Our specific focus: What can NLP contribute to awareness of language forms and rules, an important component of adult second language acquisition?
 - WERTi: Automatic generation of language awareness activities based on real-world texts.
 - IR4ALL: Retrieval of authentic texts at the appropriate level for language learners

Pedagogical grounding of our research

Awareness (Schmidt 1995):

- Noticing
 - “conscious registration of an event”
 - low level of awareness
 - implicit learning

E.g.: noticing that sometimes speakers of Spanish omit the subject pronoun

- Understanding
 - “recognition of a general principle, rule or pattern”
 - higher level of awareness
 - explicit learning
 - generalization can be internally generated or externally provided

E.g.: understanding that Spanish is a pro-drop language

⇒ Consequences:

- Learners have to be exposed to linguistic features to acquire them.
- Learners have to notice those features.
- Tools presenting such linguistic features in a contextualized way, allowing for student interaction, can be helpful.
Pedagogical grounding of our research

Linguistic information and how it is conveyed

- A wide range of linguistic features can be relevant for awareness, incl. morphological, syntactic, semantic, and pragmatic information (cf. Schmidt 1995, p. 30).

- Linguistic information can be conveyed to the learner
 - using explicit linguistic terminology/representations, e.g.:
 - parts of speech
 - verbal tense, mood and aspect
 - sentence classification
 - syntactic analyses (shown as trees or sentence diagrams)
 - using implicit presentation, e.g.:
 - coloring, underlining, moving, etc
 - pointing to correct or incorrect uses

⇒ Awareness activities can include both implicit and explicit presentation of linguistic features.

Modeling FLT practice

- A common pedagogical practice in FLT moves from target language presentation, to practice, on to production.

- Proposal: Create sequences of linguistic awareness activities following the initial stages of such a progression:
 I. Receptive presentation
 II. Productive presentation
 III. Controlled practice

- What makes this idea interesting?
 - NLP technology can identify certain relevant linguistic categories and forms in real-life texts.
 - The contents of these texts can be selected by the learners based on their interests.
 - The sentences turned into exercises can remain fully contextualized as part of the text selected by learner.
 - Automatic feedback for the activities is feasible since the original text is known.

The activity progression in WERTi

Using real world web-based texts (such as news articles) we provide a progression of activities:

Step 1. Receptive presentation
Ex. The system *colors* examples of targeted items.

Step 2. Productive presentation
Ex. The learner is asked to *find* and *mouse-click* all tokens of the targeted category. The system shows correct picks in green, incorrect ones in red.

Step 3. Controlled practice
Ex. The learner is asked to
 - *reorder* words/phrases given (scrambled) list
 - complete *fill-in-the-blank* (FIB) slots
 - created for tokens of targeted category
 - given some information, where needed (e.g., stems)

Examples and Target types

- **Examples:**
 - FIB Determiners
 - Colored Gerunds

- **Types of targets:**
 - Lexical targets:
 - prepositions
 - determiners
 - Lexical form targets with contextual triggers:
 - gerunds vs. *to*-infinitives
 - *if* conditionals
 - tense and aspect
 - Syntactic targets with discourse context triggers:
 - active vs. passive
What is involved in realizing such an approach?

- Two components can be distinguished:
 1. Obtaining and selecting appropriate texts:
 - Texts obtained through web search using terms provided by the language learner
 - restrict web to news sites (e.g., Reuters)
 - alternative: specific corpora
 - Texts could be filtered according to aspects relevant to language learning (text readability, frequency of relevant constructions, etc. → IR4LL discussion below)
 2. Identifying the targets in the selected texts and creating receptive and productive presentations, and controlled practice exercises using the texts.

- We illustrate the approach, focusing on the second component, by showcasing an activity progression targeting prepositions.

Prototype realization

- Original prototype in Python, integrated into the Apache2 webserver using mod_python, including:
 - searching in the Reuters site providing news webpages
 - linguistic annotation using NLTK (Bird & Loper 2004), TreeTagger (Schmid 1994)
- Recently reimplemented as UIMA-based Java servlet on Tomcat server (Aleks Dimitrov, Ramon Ziai, Niels Ott).
- The annotated text is mapped into Color, Click, and FIB presentation code (HTML and JavaScript), and fully integrated in the original web page.
- Only a standard web browser is needed to use the system.
- We are working on integrating further target patterns and activities. Prototypes available at:
 - WERTi: http://purl.org/net/WERTi
 - WERTi2: http://delos.sfs.uni-tuebingen.de:8080/WERTi

Realizing the proposal

Creating an activity sequence

- The system first annotates the web page text using efficient and robust NLP tools performing:
 - tokenization → tokens
 - lemmatization → word roots
 - part-of-speech tagging → lexical categories
 - morphological analysis → morphological properties
 - shallow parsing → phrasal categories

- The language items targeted by the activity are identified using regular expression matching of target and contextual items in the annotated text.

- The nature of the activity determines the complexity of the annotation and the regular expressions required:
 - Preposition activity: single instances of a lexical category
 - Tense and aspect: sequences of auxiliaries, inflected forms, and specific lexical items (contextual cues)

Prototype realization

- Recently reimplemented as UIMA-based Java servlet
 - IR4ICALL NLP pipeline
- The system first annotates the web page text using efficient and robust NLP tools performing:
 - tokenization → tokens
 - lemmatization → word roots
 - part-of-speech tagging → lexical categories
 - morphological analysis → morphological properties
 - shallow parsing → phrasal categories

Some challenges

- Annotation errors:
 - Statistical NLP tools are efficient and robust
 - Such tools make errors, e.g., 3–5% for POS tagging.
 - What impact do such errors have for the envisaged use?
 - It is known where errors are likely to arise (cf., e.g., Dickinson & Meurers 2003; Dickinson 2005), so one can avoid basing activities on likely error locations.

- The complexity of real life:
 - Real-life texts from the web often have
 - complex structure
 - mark-up and integrated multimedia
 - It is nontrivial to combine that web page structure with the activity based on the annotated text base.
Finding texts appropriate for language learners

- How can one find authentic texts as reading material or for activity generation (e.g., WERTi)?
- Such texts should
 - be in the language of interest
 - have the appropriate level of complexity for the learner
 - contain enough good instances of the language patterns and rules targeted by the activities.
- How about simply using the web and a standard web search engine (e.g., google)?
 - Pro: The Web is huge, and up-to-date information on virtually any topic is available.
 - Cons: Standard search engines are not aware of reading complexity and language patterns.
⇒ Create a dedicated search engine for language learning: IR4LL (Ott 2009)

Readability and how to measure it

- Readability or text difficulty: refers to the understandability or comprehensibility of a text (Klare 1963).
- The more reading proficient the reader, the less readable texts need to be in order to be understood by this reader.
- Traditional readability formulas try to measure the readability on a scale, e.g. the U.S. grade level scale.

U.S. grade level scale

Scale based on Gunning (1968, p. 40):

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Named Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>College</td>
</tr>
<tr>
<td>16</td>
<td>graduate</td>
</tr>
<tr>
<td>15</td>
<td>senior</td>
</tr>
<tr>
<td>14</td>
<td>junior</td>
</tr>
<tr>
<td>13</td>
<td>sophomore</td>
</tr>
<tr>
<td>12</td>
<td>High School</td>
</tr>
<tr>
<td>11</td>
<td>senior</td>
</tr>
<tr>
<td>10</td>
<td>junior</td>
</tr>
<tr>
<td>9</td>
<td>sophomore</td>
</tr>
<tr>
<td>8</td>
<td>Eight grade</td>
</tr>
<tr>
<td>7</td>
<td>Seventh grade</td>
</tr>
<tr>
<td>6</td>
<td>Sixth grade</td>
</tr>
</tbody>
</table>
Traditional Readability Formulas

- Over two hundred traditional readability formulas have been developed (cf. Dubey 2004).
- They are generally developed for special purposes, such as determining the complexity of military training manuals (Caylor et al. 1973).
- A frequently used traditional readability measure is the Flesch-Kincaid formula (Kincaid et al. 1975)

![Example: Flesh-Kincaid](https://example.com/kincaid.png)

- Computes U.S. grade level needed to read a text.
- Derived empirically from set of hand-classified documents.

Flesch-Kincaid = \(-15.59 + 11.8 \cdot \text{AWL}_s + 0.39 \cdot \text{ASL}\)

Where

\[\text{AWL}_s = \frac{\text{Number of Syllables}}{\text{Number of Words}} \]
\[\text{ASL} = \frac{\text{Number of Words}}{\text{Number of Sentences}} \]

- Idea:
 - The longer the word, the harder it is.
 - (and the less common it is, cf. Zipf 1936)
 - The longer the sentence, the harder it is to understand.

Another example: Dale & Chall (1948)

\[\text{Dale-Chall} = 0.1579 \cdot \text{DS} + 0.0496 \cdot \text{ASL} + 3.6365 \]

Where

\[\text{DS} = \text{Dale Score} \]
\[\text{ASL} = \frac{\text{Number of Words}}{\text{Number of Sentences}} \]

- Adds the idea of a specific list of “easy” words.
- List produced by “testing forth-graders on their knowledge in reading of a list of approximately 10,000 words”.
- The more words are outside the set of “easy” words, the more difficult the text is.

Traditional readability measures: Evaluation

- Pros:
 - Relatively simple to use.
 - ‘Simple’ NLP only: tokenizer, stemming, sentence splitter, sometimes syllable counter
- Cons:
 - Originally developed and validated using very small and often highly specific data sets (e.g., technical manuals).
 - No explicit validation of automatic analysis compared to original human analysis (e.g., syllable counting)
 - Measures such as sentence length are relative to domain.
 - Underlying assumptions (e.g., ‘long sentences are difficult’) are rather crude generalizations.
Lexical Frequency Profiles (LFPs)

- Introduced by Laufner & Nation (1995) for the purpose of measuring the vocabulary used by learners.
- Ott (2009) uses LFPs 'upside down': measuring vocabulary in texts for learners, not by learners.
- LFPs work with 3 word lists:
 - First 1000 words of the General Service List (West 1953).
 - General Service List: list of words sorted by frequency
 - Second 1000 words of the General Service List.
 - Academic Word List (Coxhead 2000).
 - Underlying assumption: lists are mutually exclusive.

Lexical Frequency Profile: Example

Results for a typical Wikipedia article:

<table>
<thead>
<tr>
<th>Word List</th>
<th>Tokens</th>
<th>Types</th>
<th>Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSL 1</td>
<td>2202</td>
<td>75.39%</td>
<td>542</td>
</tr>
<tr>
<td>GSL 2</td>
<td>121</td>
<td>4.14%</td>
<td>94</td>
</tr>
<tr>
<td>AWL</td>
<td>245</td>
<td>8.39%</td>
<td>136</td>
</tr>
<tr>
<td>Others</td>
<td>353</td>
<td>12.08%</td>
<td>227</td>
</tr>
<tr>
<td>Total</td>
<td>2921</td>
<td>100%</td>
<td>999</td>
</tr>
</tbody>
</table>

- Families: related by simple morphological processes
 - e.g., happy, happily, and happiness are in same family

Vocabulary-based measures

Pros:
- Vocabulary is an important issue for learners.
- ‘Simple’ NLP only: tokenizer, lemmatizer, perhaps tagger.
- Measure can be informed by controlled vocabulary lists of text books.
- Lists can also be extracted from corpora.

Cons:
- Vocabulary changes constantly, e.g., the General Service List was published in 1953 and correspondingly does not contain words such as Internet or e-mail?
- Vocabulary is domain-specific: Does the Academic Word List contain words of your field of research?

Syntactic Complexity

Vocabulary useful indicator, but if sentences are complex, learners will still have trouble understanding them.

Sentence length as used in readability formulas simplistic.

How can syntactic complexity be measured?

Two simple units (Hunt 1965):
- Clause: “a structure with a subject and a finite verb”
- T-unit: “a main clause plus any subordinate clauses”
Measuring syntactic complexity

Lu (2009) automates 14 measures of syntactic complexity which have been discussed as correlating with L2 proficiency:

<table>
<thead>
<tr>
<th>Type</th>
<th>Measure</th>
</tr>
</thead>
</table>
| Length of production| Mean length of clause
Mean length of sentence
Mean length of T-unit |
| Sentence complexity | Mean number of clauses per sentence |
| Subordination | Mean number of clauses per T-unit
Mean number of complex T-units per T-unit
Mean number of dependent clauses per clause
Mean number of dependent clauses per T-unit |
| Coordination | Mean number of coordinate phrases per clause
Mean number of coordinate phrases per T-unit
Mean number of T-units per sentence |
| Particular structures| Mean number of complex nominals per clause
Mean number of complex nominals per T-unit
Mean number of verb phrases per T-unit |

Textbook structures: Example

Linguistic structures taught in a textbook for English (Klett: Green Line 4, Weisshaar 2008):

<table>
<thead>
<tr>
<th>Unit</th>
<th>Structures taught</th>
</tr>
</thead>
</table>
| 1 | Present perfect progressive with *since* and *for*
Past perfect progressive
Attributive use of adjectives after nouns
Adverbs of degree |
| 2 | Perfect infinitive with modal verbs
Passive infinitive with full verbs and modals |
| 3 | Gerund as subject, object, and after verbs and adjectives with prepositions
Object plus -ing form
Present and past progressive passive
Passive with verbs with prepositions |
| 4 | Verb plus object plus infinitive
Infinitive after question words and after superlatives
Infinitives vs. Gerund |
| 5 | Non-defining relative clauses
Participles as adjectives |

Textbook structures

- Textbooks introduce linguistic categories and forms in order of perceived complexity.
- For the purpose of teaching grammar, particular structures are especially relevant, e.g. ‘give me a text with a lot of gerunds’.
 - Ott & Ziai (2008) developed a constraint grammar-based approach for classifying -ing forms into gerunds, participles, and the progressive forms.

Information Retrieval

Manning et al. (2008, ch. 1):

“Information Retrieval is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).”
Indexing does the trick in IR!

Simply put:
- Usually one has documents that contain words (“terms”).
- Re-sort everything so that one has terms that are associated with documents → indexing.
- Result: the terms from the query can be mapped to terms in the index at low cost, giving you the corresponding documents quickly.

Example: Boolean index

<table>
<thead>
<tr>
<th>Doc1</th>
<th>Doc2</th>
<th>Doc3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jackie</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Jon</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>likes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>loves</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Vickie</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Index with weights: Example

- **TF-IDF (Term Frequency · Inverse Document Frequency):** Weigh terms which occur in fewer documents more highly.

Text models

- In addition to the words themselves, any information about a text can be used as an index.
 - Here: readability measures
- All measures are stored in a table for each text, the so-called text model.
- The table contains the key (name) for each measure and a value.
Example of a text model (extract)

#### Type	Key	Value
General | Character Count | 14249
General | Sentence Count | 111
General | Token Count | 2542
General | Type-Token Ratio | 0.3703
LFP | Academic Word List Token Ratio | 0.0816
LFP | Academic Word List Type Ratio | 0.1389
LFP | General Service List 1k Token Ratio | 0.1389
LFP | General Service List 1k Type Ratio | 0.4191
LFP | General Service List 2k Token Ratio | 0.0557
LFP | General Service List 2k Type Ratio | 0.0841
LFP | Off-List Token Ratio | 1.3119
LFP | Off-List Type Ratio | 0.1325
Readability | Automatic Readability Index | 12.7182
Readability | Flesch Reading Ease | 57.6363
Readability | Gunning Fog Index | 19.4510
Readability | Original Dale-Chall Score | 8.8971

Towards Evaluation

- An experiment with 190,872 unique documents downloaded from 7 online encyclopedias.
- Encyclopedias are likely to contain articles on one topic each, but with different text difficulty.
- Sample of 7,000 text models (1,000 models for each site).

Towards Evaluation: Some results

Distribution of scores from two grade level-based measures:

- **RARI**
- **RColemanLiau**

![Distribution of scores from two grade level-based measures](image-url)

- This type of evaluation gives only a first impression.
- A gold standard (annotated corpus) should be created and used instead.
Summary

- Fostering language awareness is a well-motivated component of FLT.
- We discussed WERTi: web-based activity generator based on real-world texts selected by the learner.
 - a learner-driven approach, in which learners can
 - generate as many activities as they want
 - choose texts that match their interests
 - activities that remain fully contextualized as whole articles with the original web presentation intact
 - learner interaction with simple feedback based on the original text and linguistic analysis
- Develop search for real-world texts supporting a range of reading difficulty measures and specific linguistic categories → IR4LL.

References

