
New Web Services at BAS

Christoph Draxler
Florian Schiel, Thomas Kisler, Julian Pömp

25.04.2018



Workflow, tools and data

Aufnahme

Segmentation

Annotation

xml, txt

TextGridcsv emuR

txt, wav

Transkription

wav

txt, wav

Auswertung

Im-/Export
API
in Arbeit

Current work at BAS

I speech recordings via
browser or app

I external ASR

I editors in the workflow

I chunker

I pipeline services



Annotation: experiences

Task Data Cost Time factor

chunking1 edit list e 2
raw transcriptiton orthography, markup e 10-25
canonical transcription SAMPA ee 60
auditive transcription IPA eee 300
manual segmentation IPA, timestamps eee 1200

[Kva93], [WMA+11]

1visual and/or auditive setting of boundaries in the signal



New frontiers

For well-resourced languages

I improve ASR of difficult audio signals

I optimise transcription task

For less-resourced languages

I provide manually prepared materials for training
automatic services

I i. e. spontaneous speech of many speakers, manual
phonetic segmentation, pronunciation dictionaries



https://clarin.phonetik.uni-muenchen.de/BASWebServices

https://clarin.phonetik.uni-muenchen.de/BASWebServices


MAUS: Languages

Thank you!

I several variants of Swiss German

I collaboration with Uni ZH

Your language not here?

I try the language independent
settings

I send us a corpus of your language!



MAUS: Languages

Thank you!

I several variants of Swiss German

I collaboration with Uni ZH

Your language not here?

I try the language independent
settings

I send us a corpus of your language!



Automatic Speech Recognition
ASR



Hey Siri! Google won’t listen and Alexa is busy buying stuff I
don’t need!



Hey Siri! Google won’t listen and Alexa is busy buying stuff I
don’t need!



ASR seems to work. Why not use it?

ASR works well, given

I well-resourced languages

I near-field microphone signals or microphone arrays

I processing power

I specific contexts

I standard transcripts

This is not what we have – and maybe not even want.



ASR seems to work. Why not use it?

ASR works well, given

I well-resourced languages

I near-field microphone signals or microphone arrays

I processing power

I specific contexts

I standard transcripts

This is not what we have – and maybe not even want.



Inside Amazon Echo and Apple HomePod

https://www.amazon.de/dp/B06ZXQV6P8

https://www.apple.com/uk/homepod/



ASR as a web service

Use ASR to generate a raw orthographic transcript

I ASR interfaces available from third party providers

I some restrictions apply (max. duration, quota . . . )

I commercial providers store the audio signal (!)

I quality of the result varies greatly

Then, correct the ASR output manually[KRS17].



ASR demo: 2 signal conditions



ASR vs. manual transcription

Haven on Demand Google EML manual
und und und und
Saft pass das pass

auf auch auf
an dann dann dann
dessen das das als
nächstes nächste nächste nächstes
wegen das

innen irgendeine
Betriebsversammlungen Betriebsversammlung Betriebsversammlungen Betriebsversammlung

und oder
das aus so

seien sind und und
die die die die
Chefin Chefin Chefin Chefin
von von von von
diese dieser dieser dieser

diese zur diese
Filial Filialkette Filialkette Filialkette
Kette
30 22 27

far-field microphone, studio environment, Levenshtein distance
on characters



ASR supported by BAS Web Services

I Google: commercial, many languages, max. 10s

I HP Haven on Demand: commercial, limited set of
languages

I IBM Watson: commercial, limited set of languages,
monthly quota

I European Media Lab: non-commercial, limited set of
languages

I Radboud University: academic, limited set of languages

CLARIN login required!



Octra – Transcription editor(s)
for raw transcripts



Orthographic transcription – why?

ASR simply is not good enough for

I noisy signals

I under-resourced languages

I particular speaking styles

I transcriptions with markup

I . . .

Humans are incredibly flexible: it often takes only a few
minutes to adapt to a speaker or a noisy condition



Octra motivation

Octra was developed from scratch, with efficiency as the main
design goal

I web application – no installation

I local, online and URL mode of operation

I three different editors

I various import and export formats

I . . .

Octra is developed by Julian Pömp and Christoph Draxler
[PD17]



2D-Editor



Detail editor



Check transcripts in overview



Export transcripts



AnnotJSON-format

{"name": "DRCH0001Y1",

"annotates": "DRCH0001Y1.wav",

"levels": [

{

"name": "Tier_1",

"type": "SEGMENT",

"items": [

{

"id": 1,

"labels": [

{"name": "Tier_1",

"value": "speech is a very special means of communication it is unique to humans"}],

"sampleStart": 0,

"sampleDur": 284721

},

...



Octra – pilot study

Task: transcribe 3-5 minute long speech on ”Communication”

I two transcribers, no prior experience with Octra

I manual correction of ASR output vs. full manual
transcription

I basic transcription guidelines

Individual transcription styles and preferences!



Chunker – processing long
audio files



Chunker: Motivation

Chunker speeds up segmentation of long audio files

I WebMAUS requires O(n2) processing time

I practical limit approx. 20 min

An automatic chunk segmentation tool for long transcribed speech recordings

Nina Poerner1, Florian Schiel1

1Bavarian Archive for Speech Signals,
Ludwig-Maximilians-Universität München

npoerner@phonetik.lmu.de, schiel@phonetik.lmu.de

Abstract
Forced alignment tools such as the Munich Automatic Segmen-
tation System (MAUS) [1] do not scale well with input size. In
this paper, we present a preprocessor chunk segmentation tool
to combat this problem. It dramatically decreases MAUS’s run-
time on recordings of duration up to three hours, while also hav-
ing a slightly positive effect on segmentation accuracy. We hope
that this tool will advance the use of non-scientific transcribed
recordings, such as audio books or broadcasts, in phonetic re-
search. The chunker tool will be made available as a free web
service at the Bavarian Archive for Speech Signals (BAS) [2].
Index Terms: segmentation, speech technology, web services

1. Introduction
The Munich Automatic Segmentation System is a phonetic seg-
mentation tool for transcribed audio files. Apart from being able
to perform forced alignment, it can also be used to model pro-
nunciation variation, leading to a potentially more accurate seg-
mentation. MAUS is currently available as a web service at the
BAS, and is used by a growing number of academic users [3].
Unfortunately, MAUS’s runtime does not scale well with input
duration, making its use impractical for audio files beyond the
20 minute mark (see Figure 1). There are segmentation tools
that are less susceptible to long input durations (e.g. [4], [5],
[6]), however, none of them are to our knowledge able to model
pronunciation variation in the way that MAUS is. Therefore, we
aimed to find a way to make MAUS faster, while preserving this
feature. One way to do so is by providing MAUS with a chunk
segmentation, thereby breaking up the segmentation task into
smaller subtasks. The chunker tool presented below is able to
create such a chunk segmentation automatically in a relatively
short period of time.

2. Previous works
The chunker builds heavily on a method introduced by [4].
Their main insight is that, after performing speech recognition
on the signal, the alignment can be performed in the symbolic
instead of the signal domain, which is generally less costly.
While the resulting symbolic alignment is unlikely to be per-
fect, there may be stretches where the recognized string and the
transcription match for a sufficient number of symbols, meaning
that they can be considered aligned (so-called ’anchors’). Any
non-aligned stretches can be recursively subjected to the same
procedure, taking advantage of the fact that information about
their content has become more specific since the last iteration.
[5] take a similar approach, but also adapt acoustic models on
already aligned stretches. [6] perform phoneme recognition in-
stead of word-based recognition, which speeds up the process
at the cost of accuracy.

3. The tool
The chunker presented here takes a similar approach to the tools
mentioned above. However, instead of producing a phonetic
segmentation, it segments the material into chunks, leaving the
more fine-grained segmentation to MAUS. The chunker is inter-
operable with other tools developed at the BAS, as it complies
with their data interchange strategies. It is implemented as a
C++ module and requires a number of HTK [7] tools.

3.1. Three algorithms in one

The chunker is able to perform recognition and symbolic align-
ment at both the word and the phoneme level. Therefore, it can
be used in three ways:

• T chunker: recognition on word-based lattice, followed
by token-based symbolic alignment

• P chunker: recognition on phoneme-based lattice, fol-
lowed by phone-based symbolic alignment

• TP chunker: recognition on word-based lattice, fol-
lowed by phone-based symbolic alignment

3.2. Recognition

Recognition is performed by the HTK tool HVite. The under-
lying language or phonotactic model is trained on the transcrip-
tion, with a customizable n-gram degree and smoothing factor.
If multithreading is enabled, the audio file is split and paral-
lelized, thereby further speeding up the process.

3.3. Symbolic alignment

Symbolic alignment is performed by an implementation of the
Hirschberg algorithm [8], with naive Levenshtein [9] edit costs.
The Hirschberg algorithm is well suited for long symbolic

Figure 1: Runtime T chunker + MAUS, TP chunker + MAUS,
P chunker + MAUS and MAUS-only phonetic segmentation at
different input audio durations on an HP ProLiant DL160 G6
server, using 6 threads

12. Tagung Phonetik und Phonologie im deutschsprachigen Raum

144

Chunker was developed by Nina Poerner [PS16]



Chunker Procedure

Chunker prerequisites: orthographic transcript and audio file

I generate raw transcript using ASR

I search for matching word sequences in ASR output and
transcript

I extract words from manual transcript and cut audio file
using ASR timestamps

I run WebMAUS for the paired text and audio fragments

I recombine everything



Chunker results

File F1S02 SPM.wav (length 2:01 minutes)

I 5 chunks

I length between 17 and 36 seconds

I nicely cut in longer pauses

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5



Pipeline services – automating
the workflow



Pipeline services: Motivation

User request: Simplify using web services!

I file upload and result downloads needed for every service

I which file formats work for which tool?

I too many options – with intransparent dependencies

I too much clicking. . .

There must be an easier way!



Pipeline services

Preconfigured sequences of tasks

I only one file upload needed

I default options are set

I expert options are still available, but . . .

I notification with a download link via mail

Pipeline services access new application areas, e. g. Oral
History, qualitative sociology . . .



Pipeline services



Pipeline services: results

Process result files in the browser or download them

Several output formats available (BAS Partitur, AnnotJSON,
TextGrid, CSV . . . )



Emu Web App – visualisation
and editing



Emu WebApp: Motivation

Modern speech corpora are large and require collaborative
organisation of work. This requires

I access to a speech database

I online and local mode of operation

I powerful visualisation of speech signals and annotations

I access to statistics package for analysis

I no software installation

Enter Emu WebApp by Raphael Winkelmann
[WHJ17]



Emu WebApp: Motivation

Modern speech corpora are large and require collaborative
organisation of work. This requires

I access to a speech database

I online and local mode of operation

I powerful visualisation of speech signals and annotations

I access to statistics package for analysis

I no software installation

Enter Emu WebApp by Raphael Winkelmann
[WHJ17]



Emu WebApp

Check segmentations in the browser and correct them



Finally, a bit of magic. . .



’Magic’ web service

1. upload audio files

2. select ’Magic’ service

3. wait...

4. download Emu database

Watch the demo!



Some time later. . .



Summary

BAS web services are available today

I free access

I convenient pipeline services

I new services, e. g. speech recognition

The quality of the services depends on

I signal quality

I feedback to the BAS developers



Famous last words

Tool and service development is scientific work!

I both for the application field

I and (media)informatics

Support this work by publication and citation!



T. Kisler, U. Reichel, and F. Schiel.
Multilingual processing of speech via web services.
Computer Speech and Language, 45:326–347, 2017.

K. Kvale.
Segmentation and Labelling of Speech.
PhD thesis, Norwegian Institute of Technology, Trondheim, 1993.

Julian Pömp and Christoph Draxler.
OCTRA – A configurable browser-based editor for orthographic transcription.
In Proceedings Phonetik und Phonologie, pages 145–148, Berlin, 2017.

Nina Poerner and Florian Schiel.
An automatic chunk segmentation tool for long transcribed speech recordings.
In Proceedings Phonetik und Phonologie, pages 144–146, Munich, 2016.

Raphael Winkelmann, Jonathan Harrington, and Klaus Jänsch.
Emu-SDMS: Advanced Speech Database Management and Analysis in R.
Computer Speech and Language, 2017.

J. Williams, I. Melamed, T. Alonso, B. Hollister, and J. Wilpon.
Crowd-sourcing for difficult transcription of speech.
In Proceedings IEEE Workshop on Automatic Speech Recognition and
Unterstanding (ASRU 2011)), 2011.


	Motivation
	Workflow
	Annotation

	BAS Web Services
	Automatic Speech Recognition
	Octra
	Chunker
	Pipeline services
	Emu WebApp
	Emu Magic
	Discussion

