Transliteration — why and what for?

Urdu: Arabic script Hindi: Devanagari script

lﬁlﬁllﬂﬂ}')/ﬂ@:’ul: &1 AT Y fa<r AAT BT
4__§(|M Jﬁmﬂl A T AT A

N /

The same text — two different scripts...

We would like to handle both!
(Although we focus on Urdu for the time being.)

Solution:
* Abstract away from each script to a common transliteration

* Use one lexicon and grammar for both languages

Particularities of the Urdu Script

Urdu: Script uses extended Arabic character set
* Full letters for consonants, aerabs (diacritics) for vowels
* Written Urdu: Aerab diacritics are not common
— Ambiguity: Difficult to interpret the string
* Four different types of full characters in Urdu

- — [f/

(1) Simple consonant characters
(2) Dual behaviour characters
(3) Vowel modifier character

(4) Consonant modifier character

<« — [jlor /el
J — [~

A — M
* Extensive borrowing from Arabic/Persian

— Foreign spelling retained in written Urdu
— Arabic/Persian graphemes map onto a single Urdu phoneme
(9., o=, & , u« allmapto/s/).

The Basic Architecture

Goal: Transliterate from Unicode Urdu to ASCIl scheme

* Component-based approach: Pipeline implemented in C++ using
four separate modules (see center)

* Components can be used as standalone applications

* Transliterator: Integrated in a computational grammar based on
Lexical-Functional Grammar framework using Xerox Linguistic
Environment (XLE) grammar development platform (Butt and
King 2007).

STEP 1: NORMALIZATION

Unicode Arabic: Characters can be written in two ways

* Composed form: Single entity in Unicode block
Alef madda: | a

* Decomposed form: Combined out of 2 or more characters
Alef: | a

+ lengthening diacritic madda:

-

— To avoid a duplication of rules, the input text is normalized to
composed character form.

www.PosterPresentations.com

ParGram Grammar

Transliterator Pipeline Architecture for Urdu

A Transliteration System for Urdu/Hindi Integrated in the Urdu

Tafseer Ahmedt / Tina Bogelf / Miriam Butt} / Sarmad Hussaini / Muhammad Kamran Maliki / Ghulam Razat /
Sebastian Sulgery

Universitit KonstanzT, CRULP, FAST-NUCES I

INPUT (Unicode Urdu Text)

STEP 1: NORMALIZATION (Normalize Input Text to Composed Form)

STEP 2: DIACRITIZATION (Add Aerabs to Normalized Form)

STEP 2: DIACRITIZATION

Vowel diacritics are normally not written in Urdu

* Urdu Lexicon Data (Center for Research in Urdu Language
Processing; 80.000 diacritized words)

— Lexicon lookup: Place diacritics in input text by looking up
words in the lexicon

— Ambiguity created by absence of aerab diacritics is resolved

STEP 3: UNICODE TO URDU ZABTA TAKHTI

STEP 3: UNICODE TO URDU ZABTA TAKHTI CONVERSION (Convert Unicode Encoding to UZT)

OUTPUT (Letter-Based ASCIlI Scheme Transliteration)

Integration in the XLE Program

STEP 4: TRANSLITERATION (Transliterate UZT Code into Letter-Based ASCIl Scheme)

XLE grammar development platform: Load Morphological Analyzer and LFG grammar, parse text, produce syntactic structures

Urdu Transliterator Program
sl 5B

XLE Pipeline:
gARI calTl

Morphology

"gARI calIl"

gARI:
gARI+Noun+Fem+Sg

[PRED

Hindi Transliterator Program
T AT

SUBJ

gARI calTl

CHECK

* Morphology: Encoded in ASCII-based transliteration of Urdu/Hindi

— Both Urdu and Hindi will be able to be processed via a single lexicon file, grammar and morphological component

— Facilitates lexicon development and reduces the grammar development effort

Evaluation of the Transliterator

* Sample test data: 1.000 unique high frequency words

* Data taken from 18 million word corpus (Hussain 2008)
A=C /T,

Test Corpus Size (diacritized input)

Accuracy of the system:

Accuracy: A=C, /T,

LEX-SEM [AGENTIVE -

TNS-ASP [ASPECT perf, MOOD indicative
19|CLAUSE-TYPEdecl, PASSIVE -, VTYPE main |

‘cal<[1l:gARI P’
PRED 'gART'
NTYPE [NSEM [COMMON coumﬂ

NSYN common
1|CASE nom, GEND fem, NUM sg, PERS 3

| VMORPH [MTYPE inf]
| RESTRICTED-, VFORM per

A=C /T,
(input without diacritics, with
foreign words)

A Accuracy of the system
C,,. Words correctly transliterated

T, . Total number of words taken as input

CONVERSION

Urdu Zabta Takhti (UZT): Standard encoding for Urdu language
processing

* UZT: Maps Unicode Urdu characters onto unique number
sequences (Afzal and Hussain 2001)

* UZT: Developed because there was no standard industry
codepage available

— Included in pipeline for reasons of compatibility

a) Urdu Unicode text:
cabr bk

b) UZT-converted text:
cabri 898083120

STEP 4. TRANSLITERATION

Transliteration using Finite-State Machinery: Fast & efficient

* Transliteration rules convert number-based UZT notation to
ASCIl-based transliteration scheme

* Rules compiled into a finite-state machine using the Xerox Finite-
State Tools (XFST; Beesley and Karttunen 2003)

a) UZT-converted text:
cabr 898083120
b) Transliterated, letter-based ASCII notation:
cabl cAbI
* Loan words from Arabic/Persian include graphemes from these
languages

— Some Urdu graphemes map onto the same phoneme:
oo, &, s —— /8/
Solution:

* Map genuine Urdu character to general letter, foreign characters
to variants — keeps lexicon easy to read in most cases!

o4 S
& — 82 e — 83

References

Afzal, Muhammad and Hussain, Sarmad. 2001. Urdu Computing Standards: Development of Urdu
Zabta Takhti (UZT) 1.01. In Proceedings of the 2001 IEEE International Multi-topic Conference,
pages 216- 222.

Beesley, Kenneth and Karttunen, Lauri. 2003. Finite State Morphology. Stanford, CA: CSLI
Publications.

Butt, Miriam and Tracy Holloway King. 2007. 'Urdu in a Parallel Grammar Development Environment'.
In T. Takenobu and C.-R. Huang (eds.) Language Resources and Evaluation: Special Issue on Asian
Language Processing: State of the Art Resources and Processing 41, pages 191-207.

Hussain, Sarmad. 2008. Resources for Urdu Language Processing. In Proceedings of the 6th
Workshop on Asian Language Resources, |lIT Hyderabad.

	Slide 1

