INterface FOr Rich MEtadata Resources

Thorsten Trippel, Sami Awad, Marc Bohnes, Patrick Dunkhorst, Carolin Kirchhof Universität Bielefeld

Motivation

- Language resources:
- highly structured linguistic information
- qualitative information: "small"
- Metadata for documentation
- keywords
- deep structure

Data Structure

- "Large" data set provided by project partner
- NDA: data and concrete application
- application in the medical and pharmaceutical domain
- porting to other data of multimodal annotations
- data highly structured
 terminology database
 available for the
 appropriate domain

Search Grammar

Φ = {Search, Drug, prevention, treatment, side effect, Links,

T = {pain killer, adult, 10mg, cancer, fever, Terms, etc. }

Search → Drug (Context of Disease) (Additional Drug)

Refinement → (Type of study) (Age group) (Sex) (Route of

Context of Disease -> (Drug Therapy)* (Prevention)*

(Diagnosis)* (Coexisting Disease)* (Side Effect)*

Additional Drug → (Combination) (Comparison)

Administration) (Dosage) (Free Search) (Duration of

 $G = \langle \Phi, T, R, Search \rangle$

Non-terminal symbols:

Terminal Symbols:

Search ∈ Φ

Rules:

(Refinement)

(Interaction)

Treatment)

Drug \rightarrow {...}

- •Challenge:
- using the structure
- providing access to data
- harvesting metadata
- Technical threshold
- without specialized querying skills
- portable to other resources

The keywords relevant for the search are present in the XML structure above (simplified) within DescriptorItem elements, either as term-link pairs, e.g. "treatment=pain killer" or as single terms such as "adult".

Probabilistic Search Interface Element Ranking

- regular grammar
- controlled vocabulary
- possibility of probability estimation for better interface integration

$$P(\omega_x \omega_v) = P(\omega_v \omega_x)$$

- Relative Frequency (RF) used for maximum likelihood estimation (MLE)
- general equation for word sequence of length n:

$$P(\omega_n) = \frac{C(\omega_n)}{\sum (C(\omega_{1+n}))} = 0.00..1.00$$

- assumption: recurrent patterns of search queries
- INFORMER can be optimized by statistically modeling user behavior
- RF provides statistical joint distribution of search queries in use

INFORMER Interface

Complexity

Complexity and its reduction:

- front-end: usability
- back-end: computational complexity, processing time

Idealized schema of interfaces to search engines. INFORMER ∈ Guided Search.

Implementation

Synonym Search

Termbank use: TBX-Termbase

- concept based lexical resource
- search by synonym, hyponyms, related concept
- language restrictions: same language, all languages, specific language

Conclusion

- usability of resources improved
- metadata used
- processing complexity reduced to linear complexity
- Untrained users:
- high precision
- high recall
- selection of sub-corpora for linguistic phenomena

Future work

- advancement to more linguistic resources
- more generic approach for tailoring the interface
- visualization of results
- reporting for technical analysis and optimization