On the underspecification of meaurement

Stephanie Solt

Leibniz-Centre General Linguistics (ZAS) Berlin

Workshop on Change of State Verbs DGfS 2022, Tübingen February 24, 2022

Solt (ZAS)

1/49

Measurement in language: the idealized picture

• 1-to-1 correspondence:

 $[[tall]] = \lambda d\lambda x.\mu_{HEIGHT} \succeq d$

 $\bullet \ \text{lexical item} \leftrightarrow \text{dimension} \leftrightarrow \text{scale} \leftrightarrow \text{measure function}$

• Scales isomorphic to (segments of) real number line:

- Dense and totally ordered
- Variation in endpoint
 - Closed: [0,1]
 - Open: $(0,\infty)$
 - Lower closed: $[0,\infty)$
 - etc.

- Measurement in language is inherently underspecified.
- Scale structure is variable.
- Comparing seemingly unrelated cases gives clues to how this variation and underspecification is constrained.

Roadmap

- Varieties of underspecification
- A less idealized picture
- Sonstraining Underspecification
 - Dimension
 - Mappings
 - Scale structure
 - A final case study

Concluding remarks

1

Varieties of underspecification

- A less idealized picture
- Constraining Underspecification
 - Dimension
 - Mappings
 - Scale structure
 - A final case study
- 4 Concluding remarks

#1: Underspecification of dimension

- (1) The trip to Tübingen is longer than the trip to Konstanz.
 - Distance
 - Duration
- (2) London is larger than New York.
 - Area 🙂
 - Population 🙁

#1: Underspecification of dimension

. . . etc.

#2: Underspecification of scale boundedness

- (4) The glasses are completely / ?very dry. upper closed This region of the country is ?completely / very dry. upper open
- (5) The gas tank is completely / ?very full. upper closed The train is completely / very full. distinct readings
- (6) The soup **cooled** in 20 minutes. telic The soup **cooled** for 20 minutes atelic

(Kennedy and McNally, 2005; Kennedy and Levin, 2008)

#3: Cardinal / proportional ambiguities

(7) **Few** cooks applied.

- small # of cooks applied
- small % of cooks applied
- $\bullet\,$ small % of applicants were cooks

cardinal proportional reverse proportional

(8) More residents of Ithaca than New York City know their neighbors.

- # of residents \circledast
- % of residents \bigcirc
- (9) My manuscript has more typos than yours does.
 - total # of typos
 - # typos / page

(Partee, 1989; Herburger, 1997; Solt, 2018b; Bale and Schwarz, 2020)

#4: Underspecification of orderings

- A: The Picasso is more beautiful than the Miró.
 B: No, the Miró is more beautiful !
- (11) A: Your shirt is dirtier than my shirt.B: No, yours is dirtier!
- (12) The chocolate cake is heavier than the carrot cake.

(Kennedy, 2013; McNally and Stojanovic, 2017; Solt, 2018a)

#5: Underspecification of scale structure

- (13) a. Most Americans have broadband internet access.
 - b. More than half of Americans have broadband internet access.
- (14) a. **Most** pastel hues have a calming effect.
 - b. ??More than half of pastel hues have a calming effect.
 - More than half requires possibility of precise counting.
 - Most does not.

▷ 'Cardinality' can be tracked by scales that differ in their structure.

(Solt, 2016)

#5: Underspecification of scale structure

- (16) I think ??25% / #a quarter / .25 / #1 in 4 is a small number.
- (17) Let's disperse 25% / a quarter / #.25 / 1 in 4 of the donations.
- (18) Her odds of winning are 25% / #a quarter / #.25 / 1 in 4.
- (19) The probability of winning is 25% / #a quarter / .25 / 1 in 4.
 - ▷ Even *odds* and *proportions* seem to reference distinct scales!

(Gobeski and Morzycki, 2021)

Varieties of underspecificatior

A less idealized picture

- Constraining Underspecification
- Dimension
- Mappings
- Scale structure
- A final case study
- 4 Concluding remarks

A less idealized picture

Loci of underspecification

Dimension (DIM): large, much

Scale structure (D, \succ, Op): dry, most/more than half, odds/proportions

Mapping (μ_{DIM}): more beautiful, many/few

What constrains ...

... the full range of dimensions, scale structures and mappings that a lexical item α can associate with?

... which dimension, scale structure and mapping is invoked by a particular occurrence of α ?

Varieties of underspecification

A less idealized picture

Constraining Underspecification

- Dimension
- Mappings
- Scale structure
- A final case study
- Concluding remarks

Dimension: conceptual factors

- (20) The suitcase was heavy. The cake was heavy. The music was heavy.
 - Metaphorical extension: concrete \rightarrow abstract (Lakoff and Johnson, 1980)

- (21) The rope is long.spatialThe meeting was long.temporal
 - Conceptualization of time in spatial terms (Haspelmath, 1997)
 - \triangleright Same dimension conceptually (e.g. (21): DIM = EXTENT)?

Dimension: conceptual factors

(22) How **much** . . .

rice did you buy?	weight
beer did you drink?	volume
land do they own?	area
money did you spend?	monetary value
did you sleep?	duratior
do you go to the movies?	frequency
do you like football?	intensity
taller is Mabel?	scalar extent

- \triangleright All conceptually specific cases of DIM = AMOUNT?
 - Monotonic (Schwarzschild, 2006)

Dimension

Dimension: lexical factors

	English	English	German	Italian
Count	many people	a lot	viel	molto
Mass	much wine	a lot	viel	molto
Duration	(not) sleep much	a lot	viel	molto
Frequency	(not) go out much	a lot	viel	molto
Intensity	(not) like football much	a lot	sehr	molto
Adjectival	very tall	very	sehr	molto

(Doetjes, 2008)

Dimension

Dimension: lexical factors

- (23) How much / long / #often did you sleep? duration
- (24) How much / #long / often do you go to the movies? frequency

Dimension constrained via interplay of conceptual and lexical factors.

Varieties of underspecification A less idealized picture

Constraining Underspecification

- Dimension
- Mappings
- Scale structure
- A final case study
- Concluding remarks

22 / 49

Mappings: (extra)linguistic factors

(24) A: Anna is taller than Berta.B: No, Berta is taller!

▷ Heights can be measured in inches, cm, hands, etc. – but whichever function μ_{HEIGHT} we choose, the relative ordering of two individuals does not change.

Solt (ZAS)

Underspecification

23 / 49

factual

Mappings: (extra)linguistic factors

(25)A: The Picasso is more **beautiful** than the Miró. B: No. the Miró is more **beautiful**!

- (26)A: The soup is **tastier** than the chili. B: No, the chili is much tastier!
 - \triangleright Speakers may use distinct functions μ_{BEAUTY} and μ_{TASTE} , on which order of relevant individuals is reversed.

Solt (ZAS)

Underspecification

faultless

24 / 49

faultless

A: Friedelstr. is **bumpier** than Oranienstr.

Mappings: (extra)linguistic factors

(27) A: Shirt 1 is dirtier than shirt 2.B: No, shirt 2 is dirtier!

potentially faultless

B: No, Oranienstr. is **bumpier**!

potentially faultless

▷ Again, available measures may reverse relative orders.

(28)

Underspecification

25 / 49

Ordering subjectivity experimentally

% fact

(Solt, 2018a)

Interpretation of certain lexical items – but not others – can be fixed by stipulative discourse moves.

- (29) For the purposes of this discussion ...
 - a. ... let's count Lee as **vegetarian**, since the only animals he eats are oysters.
 - b. ...let's count these oysters as **expensive**, because they cost \$36 per dozen.
 - c. ?? ... let's count Lee as **fascinating**, since he is an expert on oysters.
 - d. ?? ... let's count these oysters as **tasty**, because of their texture and brine.

Coordination by stipulation

(30) For the purposes of this discussion ...

- a. ... let's count shirt 1 as **dirtier** than shirt 2, since the spectrophotometer measures it to have more dirt on it.
- b. ...let's count Friedelstr. as **bumpier** than Oranienstr., because it has more bumps over 15 cm.
- c. ?? ... let's count the Picasso as more **beautiful** than the Miró, because of its use of color.
- d. ?? ... let's count the soup as **tastier** than the chili, because of its use of cumin.
- Underspecification of measurement of the 'dirty' class a matter of language; that of the 'beautiful'/'tasty' class a matter of extra-linguistic judgements.

Solt (ZAS)

Underspecification

Template for adjective meaning

The lexical meaning of adjectives encodes (at most) a dimension, not a particular measure function or scale:

$$\llbracket \mathsf{Adj} \rrbracket^c = \lambda d\lambda x. \mu^c_{DIM}(x) \succeq d$$

Constraining mappings

dirty: μ lexically constrained:

(31)
$$\llbracket \text{dirty} \rrbracket^c = \lambda d\lambda x. \mu_{DIRTINESS}^c(x) \succeq d,$$
where $\mu_{DIRTINESS}^c(x) = \frac{\sum_{i=1}^n k_i^c \cdot \mu_{AMOUNT}^c(dirt_i^c(x))}{\mu_{SIZE}^c(x)}$

beautiful: μ dependent on a judge:

(32)
$$\llbracket \text{beautiful} \rrbracket^{c;j} = \lambda d\lambda x. \mu_{BEAUTY}^{c;j}(x) \succeq d$$

Varieties of underspecification A less idealized picture

Constraining Underspecification

- Dimension
- Mappings
- Scale structure
- A final case study
- Concluding remarks

Scale structure: *Most / more than half*

- (33) a. Most Americans have broadband internet accesss.
 - b. More than half of Americans have broadband internet access.
- (34) a. Most pastel hues have a calming effect.
 - b. ??More than half of pastel hues have a calming effect.
- (35) a. Restrictions have been relaxed in most counties.
 - b. Restrictions have been relaxed in more than half of counties.
- (36) a. Rain is forecast in most parts of the country.
 - b. ??Rain is forecast in more than half of parts of the country.

Scale structure

Scale structure: *Most / more than half*

- **Most** electricity is produced in power plants. (37)a.
 - b. More than half electricity is produced in power plants.
- (38)**Most** sadness diminishes with the passage of time. а.
 - b. ??More than half of sadness diminishes with the passage of time.

Scales of cardinality and amount

Ordinal

A < B < C < D

• Semi-ordered (cf. ANS; Dehaene et al. 1998)

Lexical semantics

Most As are B:

 $\mu_{DIM}(A \cap B) \succ \mu_{DIM}(A - B)$

- Ratio 🗸
- Ordinal
- Semi-ordered \checkmark

More than half of As are B:

 $\mu_{DIM}(A\cap B)\succ \mu_{DIM}(A)/2$

- Ratio
- Ordinal X
- Semi-ordered X

Effect of scale structure

most \checkmark / more than half \checkmark

Americans, statesexact counting possibleelectricitynumerical measurement possible

most </br>/more than half X

parts of the state	lack of stable atoms
	ightarrow exact counting not possible
sadness	numerical measurement not possible

▷ Measurement lexicalized by quantificational expressions may be underspecified wrt. scale structure – but this is constrained by:

- lexical semantics . . .
- ... in conjunction with properties of measured entities.

Varieties of underspecification A less idealized picture

Constraining Underspecification

- Dimension
- Mappings
- Scale structure
- A final case study
- Concluding remarks

Ambiguities with many / few

(39) **Few** cooks applied.

- small # of cooks applied
- small % of cooks applied
- small % of applicants were cooks

Possible explanations:

- Lexical ambiguity (Partee, 1989; Romero, 2021)
- Variability in standard setting (Solt, 2009; Penka, 2018)
- Syntactic factors (Herburger, 1997)

cardinal proportional reverse proportional

38 / 49

Proportional readings of more (many+-er)

Forward:

(40) More residents of Ithaca than New York know their neighbors.Compares % of residents.

Reverse:

(41) More cooks applied to my program than to your program.Compares % of applicants.

Contextual:

- (42) Your manuscript has more typos than my manuscript.
 - Compares typos / page.

Underspecified measure functions

many / much: $\mu_{DIM}(\alpha)$

- (43) More residents of Ithaca than New York know their neighbors. • $\mu_{DIM} = |x|/ \sqcup |[\![NP]\!]|$
- (44) More cooks applied to my program than to your program. • $\mu_{DIM} = |x|/ \sqcup |\llbracket VP \rrbracket|$
- (45) Your manuscript has more typos than my manuscript. • $\mu_{DIM} = |x|/LENGTH$

(Solt, 2018b; Bale and Schwarz, 2020)

Constraining underspecification – lexical factors

Proposed constraints on μ_{DIM} :

- Monotonicity (Schwarzschild, 2006)
- Permutation invariance (Wellwood, 2018)
- (46) a. |*x*| ✓
 - $\mathsf{b}. \quad |x|/\sqcup |\llbracket NP \rrbracket| \checkmark$
 - c. $|x|/ \sqcup |\llbracket VP \rrbracket| \checkmark$
 - d. $|x|/MEASURE \ OF \ RELEVANT \ UNIT \ \checkmark$
 - e. 3 * |x| X
 - $\mathsf{f.} \quad |x|*|\llbracket NP\rrbracket| \; \mathsf{X}$
 - g. etc.
 - ▷ 'Rate-based' measurement cognitively natural?

Solt (2018b): Domain-restricted measure functions

$$\left\{ \begin{array}{c} y: y \sqsubseteq x \end{array} \right\} \xrightarrow{\mu_{DIM;x}(x)}$$

- ▷ How to encode??
- ▷ Connection to *dry*, *full*?

- A less idealized picture
- Constraining Underspecification
 - Dimension
 - Mappings
 - Scale structure
 - A final case study
- Concluding remarks

43 / 49

Concluding remarks

- Measurement in language is inherently underspecified.
- This underspecification is constrained by the interplay of:
 - conceptual factors
 - lexical factors
 - grammatical factors
 - properties of the entities measured
- Many questions remain open!

Thank you!

References I

- Bale, A. and Schwarz, B. (2020). Proportional readings of *many* and *few*: the case for an underspecified measure function. *Linguistics and Philosophy*, 43:673–699.
- Dehaene, S., Dehaene-Lambertz, G., and Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. *Trends in Neurosciences*, 21:355–361.
- Doetjes, J. (2008). Adjectives and degree modification. In McNally, L. and Kennedy, C., editors, *Adjectives and Adverbs: Syntax, Semantics, and Discourse*, pages 123–155. Oxford University Press, Oxford.
- Gobeski, A. and Morzycki, M. (2021). Odds, probabilities, scores, and the interpretation of measure phrases. In *Sinn und Bedeutung 26*. University of Cologne.
- Haspelmath, M. (1997). From space to time: temporal adverbials in the world's. Lincom Europa, Munich.
- Herburger, E. (1997). Focus and weak noun phrases. *Natural Language Semantics*, 5:53–78.
- Kennedy, C. (2013). Two sources of subjectivity: Qualitative assessment and dimensional uncertainty. *Inquiry: An Interdisciplinary Journal of Philosophy*, 56:258–277.

References II

- Kennedy, C. and Levin, B. (2008). Measure of change: The adjectival core of degree achievements. In McNally, L. and Kennedy, C., editors, *Adjectives and adverbs: Syntax, semantics, and discourse*, pages 156–182. Oxford University Press, Oxford.
- Kennedy, C. and McNally, L. (2005). Scale structure, degree modification and the semantics of gradable predicates. *Language*, 81:345–381.
- Kennedy, C. and Willer, M. (2016). Subjective attitudes and counterstance contingency. In Moroney, M., Little, C.-R., Collard, J., and Burgdorf, D., editors, *Proceedings of Semantics and Linguistic Theory 26 (SALT26)*, pages 913–933, Washington, D.C. Linguistic Society of America.
- Lakoff, G. and Johnson, M. (1980). The metaphorical structure of the human conceptual system. *Cognitive Science*, 4:195–208.
- McNally, L. and Stojanovic, I. (2017). Aesthetic adjectives. In Young, J. O., editor, Semantics of Aesthetic Judgment, pages 17–37. Oxford University Press, Oxford.
- Partee, B. H. (1989). Many quantifiers. In Powers, J. and de Jong, K., editors, Proceedings of the 5th Eastern States Conference on Linguistics, pages 383–402. Ohio State University.

References III

- Penka, D. (2018). One *many*, many readings. In Robert Truswell, Chris Cummins, C. H. B. R. and Rohde, H., editors, *Proceedings of Sinn und Bedeutung 21*, volume 2, pages 933–950.
- Romero, M. (2021). The many readings of *many*: *POS* in the reverse proportional reading. *Linguistics and Philosophy*, 44(281–321).
- Schwarzschild, R. (2006). The role of dimensions in the syntax of noun phrases. Syntax, 9(1):67–110.
- Solt, S. (2009). *The semantics of adjectives of quantity*. PhD thesis, City University of New York.
- Solt, S. (2016). On measurement and quantification: the case of *most* and *more than half*. *Language*, 92(1):65–100.
- Solt, S. (2018a). Multidimensionality, subjectivity and scales: experimental evidence. In Castroviejo, E., McNally, L., and Sassoon, G. W., editors, *The semantics of gradability,* vagueness, and scale structure: Experimental perspectives, pages 59–91. Springer, Cham.

References IV

- Solt, S. (2018b). Proportional comparatives and relative scales. In Robert Truswell, Chris Cummins, C. H. B. R. and Rohde, H., editors, *Proceedings of Sinn und Bedeutung 21*, volume 2, pages 1123–1140.
- Wellwood, A. (2018). Structure preservation in comparatives. In Proceedings of Semantics and Linguistic Theory 28 (SALT28, pages 78–99.

49 / 49